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Abstract
If asset prices have no jumps it is known that the growth optimal Kelly strategy lies on
the local efficient frontier, that is has maximal instantaneous Sharpe ratio. In this paper
we show that, when asset prices have jumps, this property ceases to hold. However,
the discrepancy is small for jumps with magnitude less than 25%. Our results further
indicate that a Kelly trader fears market crashes but favors stock picking more than a
maximal Sharpe trader. We also explain why Merton’s approach to jump modeling is
not well suited to study the risk of bankruptcy associated with leverage.
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1 Introduction

If asset prices have no jumps, it is known (e.g. Bermin and Holm (2021, 2023)) that
the growth optimal Kelly strategy lies on the local efficient frontier; that is, it has a
maximal instantaneous Sharpe ratio (Nielsen and Vassalou (2004)). In this paper, we
show that when asset prices have jumps, this property ceases to hold. We model asset
prices as jump-diffusions, using the framework of a marked point process (Jacod and
Shiryaev (2003); Björk (2021)), and provide extensive details to highlight the easewith
which it can be applied. We also compare the chosen approach with that of Merton
(1976) and find that his approach can largely underestimate the risk of bankruptcy
(when high leverage is applied).

Within the original (single-period) expected utility framework (von Neumann and
Morgenstern (1947)), the mean-variance model (Markowitz (1952)) plays a central
role; especially among practitioners. It is not a wild guess that the popularity of the
mean-variance model is due to the resulting strategy having a maximal Sharpe ratio
(Sharpe (1966, 1994)), rather than corresponding to a quadratic utility function. The
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question arises: If we do not believe in the (single-period) quadratic utility specifica-
tion, can we still believe that maximizing the Sharpe ratio is a reasonable objective
for asset allocation?

A few years after Markowitz’s publication, Kelly (Kelly (1956)) developed a novel
approach to optimal capital formation. Kelly stressed that the important quantity to
look at is the excess logarithmic return (rather than the excess return) and argued:
“The reason has nothing to do with the value function which [the investor] attached
to his money, but merely with the fact that it is the logarithm which is additive in
repeated bets and to which the law of large numbers applies.” The corresponding
trading strategy is known as the Kelly criterion or, as we call it, the growth optimal
Kelly strategy. Subsequent to Kelly’s publications, many authors (e.g. Hakansson
(1971) and Elton and Gruber (1974), to name just a few) investigated which utility
functions remained stable when extending the expected utility approach from a single
period to multiple periods. The analysis showed that essentially only logarithmic and
power utilities were feasible choices, thus supporting (in a way) the approach of Kelly
as his could be cast into an extended multi-period expected utility framework with a
logarithmic utility function. In Goll and Kallsen (2003) it was finally shown, within
a general jump-diffusion setting, that the growth optimal Kelly strategy is identical to
an optimal strategy in the sense of expected utility for the logarithmic utility function.
Over the years, the theoretically oriented debate has been fierce, with, in particular,
Samuelson taking a strong objection to Kelly’s approach (see, for instance, MacLean
et al. (2011) and Ziemba (2015) for a historical recount).

History aside, Kelly’s approach showed that investors make money by rebalancing
their portfolios in two ways: both from directional changes and from the volatility
of the assets traded. Bermin and Holm showed in a sequel of papers (Bermin and
Holm (2021, 2023)) that when asset prices have no jumps, Kelly’s approach leads
to the maximization of the instantaneous Sharpe ratio (Nielsen and Vassalou (2004))
throughout time. In effect, the authors went as far as calling such maximal Sharpe
strategies Kelly strategies. The purpose of this paper is to show that one must make a
distinction between Kelly strategies and maximal Sharpe strategies when the primary
assets aremodeled as jump-diffusions. Henceforth, we refer toKelly strategies as those
strategies that are instantaneously collinear to the growth optimal Kelly strategy; thus
preserving the latter’s instantaneous Sharpe ratio. In other words, what we call Kelly
strategies is a slight generalization of the fractional Kelly strategies in MacLean et al.
(1992). Furthermore, as shown in Davis and Lleo (2013), the Kelly strategies corre-
spond closely, but not perfectly, to the optimal expected power utility strategies. With
that being said, we provide evidence that the distinction is mainly relevant for highly
volatile trading strategies where positive jumps dominate. For additional information
on optimal expected utility strategies; see, for example, Callegaro et al. (2006); Björk
et al. (2010) for power utility, and Goll and Kallsen (2003) for logarithmic utility.

To summarize our findings, we return with an answer to the very first question
raised: yes, maximizing the Sharpe ratio (more precisely, the instantaneous Sharpe
ratio) is a reasonable objective for asset allocation. Thus, the practitioners of the
mean-variance model have been mostly correct, but in order to realize this we have
had to accept intra-period trading and replace the (single-period) quadratic utility
function with a (multi-period) logarithmic or power utility function. We further stress
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that the discrepancy between maximal Sharpe strategies and Kelly strategies is not
related to the distributions of the primary assets, but rather to the very nature of the
evolution of these assets. For example, let P(t) denote the price (at time t) of an asset
with distribution function F(x; t) = P(Pt ≤ x). Then, we can always find a diffusion
model that generates the samedistribution simply by setting Pt = F−1(N (Wt/

√
t); t),

where N denotes the distribution function of a standardGaussian random variable, and
W is a one-dimensional Brownian motion. This means that the observed discrepancy
has nothing to do with the deviation of, say, log-normality for asset returns. Instead, it
is a consequence of the local properties; namely whether the asset prices have jumps or
not. The fact that aKelly trader can take advantage of the jumps is, at least, theoretically
interesting.

This paper is organized as follows. In Sect. 2, we present the jump-diffusion model.
The jumps are introduced via a marked point process (e.g. Jacod and Shiryaev (2003);
Björk (2021)), while the diffusion comes from a standard Brownian motion. We elab-
orate on how to include the randomness of the jumps in the instantaneous covariance
matrix in a smooth fashion; following closely the work by Björk and Slinko (2006)
and Christensen and Platen (2007). In Sect. 3 we define and characterize the maximal
Sharpe and Kelly strategies. Subsequently, in Sect. 4, we present two case studies
to highlight the differences between the trading strategies. Our results indicate that a
Kelly trader fears market crashes but favors stock pickingmore than amaximal Sharpe
trader. In Sect. 5, we investigateMerton’s approach to jumpmodeling (Merton (1976))
and show that this approach can either largely overestimate or underestimate the risk
of bankruptcy when applied to leveraged portfolios. Instead, we provide a framework
for studying default risk based on discrete time trading and worst-case jump analysis.
In Sect. 6, we look closer at what volatility means in the presence of jumps. Our find-
ings indicate that it is easier to approximate a Kelly strategy than a maximal Sharpe
strategy using a model without jumps. Section 7 concludes.

2 Modeling themarket

Weconsider a capitalmarket consistingof a number of primary assets (P0, P1, . . . , PN )

expressed in some common numéraire unit, say US dollar. An asset related to a
dividend paying stock is seen as a fund with the dividends re-invested. All assets
are assumed to be positive semi-martingales living on a filtered probability space
(�,F , F, P), where F = {F(t) : t ≥ 0} is a right-continuous increasing family of
σ -algebras, such that F(0) contains all the P-null sets of F . As usual, we think of the
filtration F as the carrier of information.

Uncertainty is introduced in two different ways: both continuously and through
discrete events. More precisely, we assume that the filtered probability space is rich
enough to carry a standard Brownian motionW , of dimension M , and an independent
marked point process with measure p. The so-called mark space ϒ represents the set
of all types of discrete events and is, for simplicity, often assumed to be some Borel-
measurable subset of R (typically an interval or a finite subset). Hence, informally,
we can regard p as the measure of a multivariate point process (one point process for
each υ ∈ ϒ). We also assume that the predictable compensator of p admits a positive,
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time-varying, intensity measure λ, such that λ(ϒ, t) is a.s. finite, for every t ≥ 0.
Finally, we let p̃ denote the measure of the corresponding compensated marked point
process, and note that

Ñ (t) =
∫ t

0

∫
ϒ

p̃(dυ, ds) =
∫ t

0

∫
ϒ

(p(dυ, ds) − λ(dυ, s)ds) , (1)

is a pure-jump (local) martingale. As an example, we may think of a compensated
Poisson process with constant intensity. In this case, the mark space contains just a
single point, ϒ = {υ1}, at which the intensity measure has a constant point mass λ.

We proceed to build a model for our primary assets. First, let P0 be the numéraire
asset of the economy, describing how the value of the numéraire unit changes over
time. For this asset, we require P0 > 0 a.s. after which we introduce the relative asset
prices P0|n = Pn/P0 according to

dP0|n(t)
P0|n(t−)

= b0|n(t)dt +
M∑

m=1

σ0|n,m(t)dWm(t) +
∫

ϒ

α0|n(υ, t) p̃(dυ, dt). (2)

Here, the rate of excess return b0 and the continuous volatilityσ0 are adapted processes,
while the relative jump size α0 must be a predictable process. Informally, we note that
if there is a jump at time τυ , for the discrete event υ ∈ ϒ , then

	P0|n(τυ) � P0|n(τυ) − P0|n(τυ−) = P0|n(τυ−)α0|n(υ, τυ). (3)

In order to guarantee that a unique strong solution to Eq. (2) exists, we first impose
the mild regularity condition

∫ T

0

(
‖b0(t)‖RN +

N∑
n=1

M∑
m=1

σ 2
0|n,m(t) +

N∑
n=1

∫
ϒ

α2
0|n(υ, t)λ(dυ, t)

)
dt < ∞,

almost surely, for every time horizon [0, T ], see Protter (2005) for further details. We
also assume that α0|n ≥ −1, for all n ∈ {1, . . . , N }, to ensure that the solution is
positive.

Remark 1 In most situations, the numéraire asset is assumed to be locally free and of
the form

dP0(t) = r(t)P0(t)dt,

where the adaptive process r can be thought of as the interest rate in a savings account.
Hence, under this assumption we can easily imply the dynamics

dPn(t)

Pn(t−)
= dP0|n(t)

P0|n(t−)
+ r(t)dt,
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of the individual assets, which means that b0 is the rate of return in excess of the
interest rate.

An investor can trade in the assets, and throughout this paper we assume that there
are no transaction fees, that short-selling is allowed, that trading takes place contin-
uously in time, and that trading activity does not impact the asset prices. We define
a trading strategy as a predictable vector process w = (w1, . . . , wN )′, representing
the proportion of wealth invested in each asset, and let Xw denote the corresponding
wealth process.We also set X0|w = Xw/P0. In this setup, the self-financing condition,
see Geman et al. (1995), reads

dX0|w(t)

X0|w(t−)
=

N∑
n=1

wn(t)
dP0|n(t)
P0|n(t−)

, (4)

It follows that the rate of excess return for the trading strategy w can undoubtedly be
expressed as

b0|w(t) =
N∑

n=1

wn(t)b0|n(t), (5)

such that b0|en = b0|n , for the trading strategy en = (0, . . . , 0, 1, 0, . . . , 0)′ being the
n’th coordinate vector corresponding to the investable assets. It is less clear how to
associate a total instantaneous volatility with the wealth process. In order to explain
the problem, we start by introducing the (local) martingale

Yw(t) =
∫ t

0
wn(s)σ0|n,m(s)dWm(s) +

∫ t

0

∫
ϒ

wn(s)α0|n(υ, s) p̃(dυ, ds),

using Einstein summation for repeated indices for notational simplicity, such that

dX0|w(t) = X0|w(t)b0|w(t)dt + X0|w(t−)dYw(t). (6)

Following Jacod and Shiryaev (2003), we then compute both the quadratic variation
(bracket) process and the conditional quadratic variation (angle) process. The dynam-
ics of these processes equals

d[Yw,Yw](t) = wi (t)V c
0|i, j (t)w

j (t)dt +
∫

ϒ

(
wi (t)α0|i (υ, t)

)2
p(dυ, dt),

d〈Yw,Yw〉(t) = wi (t)V c
0|i, j (t)w

j (t)dt +
∫

ϒ

(
wi (t)α0|i (υ, t)

)2
λ(dυ, t)dt,

where

V c
0|i, j (t) =

M∑
m=1

σ0|i,m(t)σ0| j,m(t), (7)
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denotes the instantaneous asset-asset covariance process associated with the continu-
ous part of the martingale Yw. One also sees that the contribution to the quadratic
variation process, originating from the pure-jump martingale term of Yw, equals∑

s≤t (	Yw(s))2 and that [Yw,Yw] − 〈Yw,Yw〉 is a pure-jump (local) martingale
driven by the compensated marked point process. Since we want the total volatil-
ity to account for the discrete jumps in a smooth way (over time), we henceforth
use the conditional quadratic covariation process; see also Björk and Slinko (2006);
Christensen and Platen (2007). We now define

V0|v,w(t) = d

dt
〈Yv,Yw〉(t), (8)

ρ0|v,w(t) = V0|v,w(t)

σ0|v(t)σ0|w(t)
, σ 2

0|w(t) = V0|w,w(t), (9)

and observe that the instantaneous asset-asset covariance process can be decomposed
into two distinct terms

V0|v,w(t) = vi (t)V0|i, j (t)w j (t), V0|i, j (t) = V c
0|i, j (t) + V d

0|i, j (t), (10)

with V c
0 being given by Eq. (7) and

V d
0|i, j (t) =

∫
ϒ

α0|i (υ, t)α0| j (υ, t)λ(dυ, t). (11)

Remark 2 If the asset-asset covariance process V0 is positive definite almost every-
where on R+ × �, it generates an inner product of the form (v,w)V0 = vi V0|i, jw j .
Note that if both V c

0 and V d
0 are positive definite a.e. on R+ ×�, then so is V0. Hence-

forth, we always assume this to be the case, which implies that the inverse of V0 exists
and that V−1

0 is also a.e. positive definite. We also write ‖w‖2A = (w,w)A whenever
the inner product is well defined for some matrix process A.

3 Optimal portfolio strategies

In this Section, we take a closer look at two prominent trading strategies that deviate
from the expected utility approach of von Neumann and Morgenstern (1947) and,
consequently, are somewhat different in spirit from the mean-variance approach of
Markowitz (1952). In the presence of a risk-free asset, what characterizes the optimal
allocations in the (single period) mean-variance approach is that they all havemaximal
Sharpe ratios in the sense of Sharpe (1966, 1994). These strategies are said to lie on the
efficient frontier. The analogous trading strategies in a continuous-time framework are
typically referred to as maximal Sharpe strategies; see, for example, Christensen and
Platen (2007) and the references therein. In the sequel, we first consider an investor
who maximizes the instantaneous Sharpe ratio and thereafter we consider a so-called
Kelly trader. It is known that in the absence of jumps in the primary assets, these
two approaches lead to the same portfolio allocations; see, for example, Bermin and

123



Kelly trading when asset…

Holm (2021, 2023). Hence, the allocations are characterized by having a maximal
instantaneous Sharpe ratio in the sense of Nielsen and Vassalou (2004). Below, we
show that with jumps present this property no longer holds. We also include some
general remarks regarding the connection to optimal expected utility strategies.

3.1 Sharpemaximizing strategies

We extend the instantaneous Sharpe ratio, as introduced in Nielsen and Vassalou
(2004), to our jump-diffusion setting (similar to Björk and Slinko (2006) and Chris-
tensen and Platen (2007)) according to

s0|w(t) = b0|w(t)

σ0|w(t)
. (12)

As in Bermin and Holm (2021, 2023), it now follows from Eqs. (4) and (10), Remark
2, and Cauchy–Schwartz’s inequality that

s20|w(t) =
(
w(t), ŵ(t)

)2
V0(t)

(w(t), w(t))V0(t)
≤ (

ŵ(t), ŵ(t)
)
V0(t)

, ŵ(t) = V−1
0 (t)b0(t), (13)

with equality if and only if w and ŵ are collinear; that is, if w = kŵ for some
predictable real-valued process k. Hence, the maximal instantaneous Sharpe ratio
satisfies

|s0|kŵ(t)| = ‖b0(t)‖V−1
0 (t), (14)

independently of k. We call the set of strategies collinear with ŵ = V−1
0 b0 for the

local efficient frontier. Furthermore, the local characteristics of a Sharpe maximizing
strategy can be summarized as

b0|kŵ(t) = k(t)s20|ŵ(t), σ 2
0|kŵ(t) = k2(t)s20|ŵ(t). (15)

In order to describe the rate of excess logarithmic return, we apply the general-
ized Itô formula, see Protter (2005). For notational simplicity we, again, use Einstein
summation over repeated indices

d ln X0|w(t) = wi (t)

(
b0|i (t) − 1

2
V c
0|i, j (t)w

j (t) −
∫

ϒ

α0|i (υ, t)λ(dυ, t)

)
dt

+ wn(t)σ0|n,m(t)dWm(t) +
∫

ϒ

	 ln X0|w(t)p(dυ, dt).

For those unfamiliar with jumps in the Itô formula, we quickly mention that one can
essentially proceed as if no jumps exist (i.e. ignoring the measure p of the marked
point process) and thereafter correct for the jumps. We summarize the result in the
following.
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Lemma 1 Let the dynamics of the wealth process be given by

dX0|w(t)

X0|w(t−)
= b0|w(t)dt + wn(t)σ0|n,m(t)dWm(t) +

∫
ϒ

wn(t)α0|n(υ, t) p̃(dυ, dt).

Then

d ln X0|w(t) =
(
b0|w(t) − 1

2
σ 2
0|w(t) +

∫
ϒ

h
(
wn(t)α0|n(υ, t)

)
λ(dυ, t)

)
dt

+ wn(t)σ0|n,m(t)dWm(t) +
∫

ϒ

ln
(
1 + wn(t)α0|n(υ, t)

)
p̃(dυ, dt),

where

h(x) = ln(1 + x) − x + 1

2
x2 ≈

1

3
x3 − 1

4
x4 + 1

5
x5 + . . .

Proof If there is a jump at time τυ , for the discrete event υ ∈ ϒ , then

	X0|w(τυ) = X0|w(τυ) − X0|w(τυ−) = X0|w(τυ−)wn(τυ)α0|n(υ, τυ),

from which we obtain

	 ln X0|w(τυ) = ln
(
1 + wn(τυ)α0|n(υ, τυ)

)
.

The proof concludes by replacing V c
0 with V0 −V d

0 , as in Eq. (10), and expressing the
result as a semi-martingale. ��

To prevent the wealth process from being over-exposed to an individual asset or
from becoming negative, it must also hold that wn · α0|n ≥ −1, for 1 ≤ n ≤ N , and∑N

n=1 wnα0|n ≥ −1 a.e. in R+ × ϒ × �. We let A denote the class of all trading
strategies such that X0|w ≥ 0 almost surely. In light of Lemma 1, we now define the
rate of excess logarithmic return by

μ0|w(t) = b0|w(t) − 1

2
σ 2
0|w(t) +

∫
ϒ

h
(
wn(t)α0|n(υ, t)

)
λ(dυ, t), (16)

and observe, using Eq. (15), that for any Sharpe maximizing strategy, we have

μ0|kŵ(t) = 1

2
k(t) (2 − k(t)) s20|ŵ(t) +

∫
ϒ

h
(
k(t)ŵn(t)α0|n(υ, t)

)
λ(dυ, t). (17)

In order to quantify the impact of jumps, we plot, in Fig. 1, the increasing function
h. We see that if the magnitude of the relative jump size is less than 25%, there
is very little impact on the rate of excess logarithmic return: h(0.25) = 0.4% and
h(−0.25) = −0.6%. To put these numbers in perspective, it is illustrative to recall
that the largest daily percentage loss for the S&P500 index, over the past 100 years,
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Fig. 1 This figure shows the function h over the interval [−0.9, 0.9] of relative jump sizes for the wealth
process. Note that the function is roughly flat for relative jumps with magnitude less than 25%

occurred in 1987 and measured approximately -21%. For jump sizes with higher
magnitude, either corresponding to rather risky assets or to leveraged positions in
moderately risky assets, we further notice that the contribution is asymmetric and that
negative large jumps have greater impact than positive large jumps of the same size.
The reason is simply that bankruptcy is an absorbing state.

In order to evaluate the maximal rate of excess logarithmic return that a maximal
Sharpe investor can achieve, we set k∗ = argmaxk μ0|kŵ and refer to the following
result.

Theorem 2 Let k∗ be the solution to the non-linear integral equation

k∗(t) − 1

s20|ŵ(t)

∫
ϒ

h′ (k∗(t)L(υ, t)) L(υ, t)λ(dυ, t) = 1,

where

L(υ, t) = (b0(t), α0(υ, t))V−1
0 (t) .

Then, if k∗L ≥ −1 a.s., the growth optimal maximal Sharpe strategy w = k∗ŵ
yields the highest rate of excess logarithmic return μ0|w among all maximal Sharpe
strategies.

Proof The proof follows from the first-order condition associated with Eq. (17) ��
From the above result, we notice that in the absence of jumps (when the function

h vanishes) we immediately get k∗ = 1. However, in general, the optimal leverage
term must be computed numerically. We end our discussion about maximal Sharpe
strategies by providing a simple example when the leverage term k∗ can, in fact, be
calculated analytically.
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Example 1 In the special case where the mark space contains just a single point, ϒ =
{υ1}, at which the intensity measure has a point mass λ(·) = λ(ϒ, ·), the maximal
Sharpe strategy k∗ŵ is characterized by

k∗(t) = L(t) − 1 +
√

(L(t) + 1)2 − 4λ(t)L3(t)/B(t)

2L(t)
(
1 − λ(t)L2(t)/B(t)

) ,

where we have set

L(t) = L (υ1, t) , B(t) = ‖b0(t)‖2V−1
0 (t)

= s20|ŵ(t).

The calculations follow from the identity (1 + x)h′(x) = x2.

3.2 Kelly strategies

In Kelly (1956) the long-term performance of certain trading strategies was considered
in conjunction with the law of large numbers. Nowadays, we say that a trading strategy
w is Kelly-admissible if w ∈ A (i.e. if X0|w ≥ 0) and

lim sup
T→∞

1

T
ln

X0|w(T )

X0|w(0)
= lim sup

T→∞
1

T

∫ T

0
μ0|w(t)dt, a.s. (18)

We also let A∗ denote the class of all such trading strategies. Hence, by applying
the strategy w∗ = argmaxw∈A∗ μ0|w, Kelly drew the conclusion that "our gambler’s
capital will surpass, with probability one, that of any other gambler apportioning his
money differently". Although this statement is certainly true for trading strategies in
A∗, it might not extend to the larger class A; a technical topic that we leave aside for
now1. Instead, we highlight the observation that, in the absence of asset price jumps,
Eq. (16) yields

w∗(t) = argmax
w(t)

{b0|w(t) − 1

2
σ 2
0|w(t)} = V−1

0 (t)b0(t) = ŵ(t), (19)

and therefore the instantaneous Sharpe ratio of w∗ is maximal with

μ0|w∗(t) = 1

2
s20|ŵ(t). (20)

Hence, using a very different approach, Kelly essentially derived the same asset alloca-
tions (that is, maximal Sharpe ratio) as didMarkowitz in his celebrated mean-variance
framework. The main difference being that Kelly also provided a long-term estimate,
Eq. (18), for the amount of money that could be earned (with probability one) by

1 For those interested in precise conditions for when the strong law of large numbers applies to a local
martingale, we refer to Liptser and Shiryayev (1989), Sect. 2.6.
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dynamically trading the position. It is also important to understand that Kelly applied
the logarithmic function to the terminal portfolio only as a means to subsequently use
the law of large numbers. We now proceed with jumps present. Below, we show that,
in this case, the growth optimal Kelly strategy w∗ is typically no longer collinear with
the maximal Sharpe strategy ŵ.

Theorem 3 Let φ be the solution to the non-linear integral equation

φ(u, t) −
∫

ϒ

h′ (φ(υ, t)) Q(u, υ, t)λ(dυ, t) = L(u, t), u ∈ ϒ,

where L and the symmetric kernel Q equals

L(u, t) = (b0(u, t), α0(u, t))V−1
0 (t) , Q(u, υ, t) = (α0(u, t), α0(υ, t))V−1

0 (t) .

Then, if φ ≥ −1 a.s., the growth optimal Kelly strategy w∗ = argmaxw μ0|w equals

w∗(t) = ŵ(t) +
∫

ϒ

h′ (φ(υ, t)) V−1
0 (t)α0(υ, t)λ(dυ, t).

Proof The proof is a direct consequence of the first-order condition, associated with
Eq. (16), which reads

w∗(t) = ŵ(t) +
∫

ϒ

h′ (wn∗(t)α0|n(υ, t)
)
V−1
0 (t)α0(υ, t)λ(dυ, t).

Multiplying both sides by α0 concludes. ��
Although the integral equation, in φ, shows similarities with a Fredholm equation

of the second kind, the nonlinearity of h′ forces us to apply numerical methods. In
Sect. 4 we show that, in many cases, such numerical schemes are highly efficient and
simple to apply. However, before going there, we provide an example of when the
integral equation can be solved analytically.

Example 2 We consider again the special case where the mark space contains just a
single point,ϒ = {υ1}, at which the intensitymeasure has a pointmass λ(·) = λ(ϒ, ·).
Then, from the identity (1 + x)h′(x) = x2, we calculate

φ(υ1, t) = L(t) − 1 +
√

(L(t) + 1)2 − 4λ(t)L(t)Q(t)

2 (1 − λ(t)Q(t))
,

L(t) = L (υ1, t) , Q(t) = Q (υ1, υ1, t) .

By comparing with Example 1, it follows that wn∗α0|n = k∗ŵnα0|n if and only if
L2 = BQ, where B = ‖b0‖2V−1

0
, and from Cauchy-Schwartz we know that the latter

expression is true if and only if b0 and α0 are linearly dependent.
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Kelly strategies are defined as strategies collinear to the growth optimal Kelly
strategy; that is, of the form w = kw∗ for some predictable real-valued process k.
Hence, we can regard these strategies as a slight generalization of the fractional Kelly
strategies in MacLean et al. (1992), and we note that they represent the local Kelly
frontier, consisting of all strategies that have the same instantaneous Sharpe ratio as
the growth optimal Kelly strategy.

Corollary 4 Let k be a predictable real-valued process. Then

b0|kw∗(t) = k(t)b0|w∗(t), σ 2
0|kw∗(t) = k2(t)σ 2

0|w∗(t).

With the notations of Theorem 3, we further have

b0|w∗(t) = b0|ŵ(t) +
∫

ϒ

h′ (φ(υ, t)) L(υ, t)λ(dυ, t),

σ 2
0|w∗(t) = σ 2

0|ŵ(t) +
∫

ϒ

h′ (φ(υ, t)) (L(υ, t) + φ(υ, t)) λ(dυ, t),

such that the local rate of logarithmic return equals

μ0|kw∗(t) = b0|kw∗(t) − 1

2
σ 2
0|kw∗(t) +

∫
ϒ

h (kφ(υ, t)) λ(dυ, t).

Proof Thefirst part of the proof follows from the general expressionsb0|w = (
w, ŵ

)
V0
,

where ŵ = V−1
0 b0, and σ 2

0|w = (w,w)V0 . Using Theorem 3, the expression for b0|w∗
immediately follows, while we calculate

σ 2
0|w∗(t) = σ 2

0|ŵ(t) + 2
∫

ϒ

h′ (φ(υ, t)) L(υ, t)λ(dυ, t)

+
∫

ϒ

∫
ϒ

h′ (φ(u, t)) Q(u, υ, t)h′ (φ(υ, t)) λ(du, t)λ(dυ, t).

Using Theorem 3 and the equation determining φ, we further see that

∫
ϒ

∫
ϒ

h′ (φ(u, t)) Q(u, υ, t)h′ (φ(υ, t)) λ(du, t)λ(dυ, t)

=
∫

ϒ

h′ (φ(υ, t)) φ(υ, t)λ(dυ, t) −
∫

ϒ

h′ (φ(υ, t)) L(υ, t)λ(dυ, t).

The final part is a direct consequence of Eq. (16). ��
We end the characterization of Kelly strategies by comparing the growth optimal

Kelly strategy w∗ with the growth optimal maximal Sharpe strategy k∗ŵ.
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Proposition 5 With the notations of Theorem 3, we have

b0|w∗(t) − b0|k∗ŵ(t) =
∫

ϒ

{h′ (φ(υ, t)) − h′ (k∗(t)L(υ, t))}L(υ, t)λ(dυ, t),

σ 2
0|w∗(t) − σ 2

0|k∗ŵ(t) =
∫

ϒ

{h′ (φ(υ, t)) − h′ (k∗(t)L(υ, t))}L(υ, t)λ(dυ, t)

+
∫

ϒ

{h′ (φ(υ, t)) φ(υ, t) − h′ (k∗(t)L(υ, t)) k∗(t)L(υ, t)}λ(dυ, t),

μ0|w∗(t) − μ0|k∗ŵ(t) = 1
2

∫
ϒ

{h′ (φ(υ, t)) − h′ (k∗(t)L(υ, t))}L(υ, t)λ(dυ, t)

− 1
2

∫
ϒ

{h′ (φ(υ, t)) φ(υ, t) − h′ (k∗(t)L(υ, t)) k∗(t)L(υ, t)}λ(dυ, t)

+
∫

ϒ

{h (φ(υ, t)) − h (k∗(t)L(υ, t))}λ(dυ, t).

Hence, a sufficient condition for w∗ and k∗ŵ to have the same local dynamics is that
φ(υ, t) = k∗(t)L(υ, t) for all υ ∈ ϒ . The necessary condition is that the three distinct
integrals vanish.

Proof Using Theorem 2, it follows that

b0|k∗ŵ(t) = k∗(t)b0|ŵ(t) = b0|ŵ(t) +
∫

ϒ

h (k∗(t)L(υ, t)) L(υ, t)λ(dυ, t).

Moreover, since b0|ŵ = σ 2
0|ŵ = s20|ŵ, we also have

σ 2
0|k∗ŵ(t) = k2∗(t)σ 2

0|ŵ(t) = k∗(t)σ 2
0|ŵ(t) +

∫
ϒ

h (k∗(t)L(υ, t)) k∗(t)L(υ, t)λ(dυ, t)

= σ 2
0|ŵ(t) + (1 + k∗(t))

∫
ϒ

h (k∗(t)L(υ, t)) L(υ, t)λ(dυ, t),

from which the proof follows by Corollary 4. ��

3.3 Optimal expected utility strategies

Here, we briefly comment on the connection to optimal expected utility strategies,
defined as w̄ = argmaxw∈A E

[
U

(
X0|w(T )

)]
, where U denotes a utility function.

However, based on the results in Hakansson (1971) and Elton and Gruber (1974), we
limit the scope to the power utility function

U (x) = x1−p − 1

1 − p
, p > 0,

where p represents the relative risk aversion. In the limit as p → 1, it follows that
U (x) = ln x . This case was carefully studied in Goll and Kallsen (2003), where it was
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shown that the growth optimal Kelly strategy w∗ equally solves the optimal expected
utility problem, within a general jump-diffusion setting, for any horizon T . For other
values of p the situation is more complex, even in the absence of jumps. By analyzing
the results in, for example, Björk et al. (2010); Callegaro et al. (2006), one finds that
the optimal expected utility strategy is of the form w̄ = 1

pw∗ + w̃, where the strategy
w̃ represents an intertemporal hedge to the randomness associated with (in particular)
the instantaneous Sharpe ratio. Hence, with deterministic model parameters, or when
the noise of the factors driving the model parameters is uncorrelated with the noise
driving the asset prices, as inDavis and Lleo (2013), this term vanishes, andwe recover
the functional form of the Kelly strategies. From an economic point of view, however,
it is somewhat unsettling that utility investors only hedge the parameter risk when
p �= 1 but not when p = 1. In practice, the chosen method depends on whether an
investor believes that maximizing utility is a good way to balance return versus risk,
or whether other risk/performance criteria are more important.

4 Two case studies

In this Section, we provide two artificial but illustrative case studies that highlight the
impact of jumps on asset allocation. In the first example, we focus on the fear of a
financial crash, while in the second example, we focus on asset picking skills. The
goal of this Section is to emphasize that a Kelly strategy is not necessarily a maximal
Sharpe strategy in the presence of jumps.

In order to explain the model we attempt to analyze, we have chosen to keep it
as simple as possible. This means that we have removed any randomness and time
dependency in the model parameters. We have also chosen to consider trading in two
assets only, andwe assume that themark space contains three points,ϒ = {υ1, υ2, υ3}.
At eachof these points, the intensitymeasure has a constant pointmass (λ1, λ2, λ3). For
each discrete event in ϒ we further specify a constant relative jump size (αv

0|1, αv
0|2),

v ∈ {1, 2, 3}. This concludes the jump specification. The diffusion specification is
expressed using the volatility of the individual assets (σ0|1, σ0|2) together with the
Brownian correlation ρ0|1,2. Finally, we let (b0|1, b0|2) denote the rate of individual
excess asset returns.

The Kelly strategy is constructed from Theorem 3 using Newton’s method. That is,
for each discrete event, we find the roots (φ1, φ2, φ3) to

Fu(φ1, φ2, φ3) = φu −
3∑

υ=1

h′ (φυ) Qu,υλυ − Lu, u ∈ {1, 2, 3},

by applying the iterative procedure φ �→ φ − J−1F , with the Jacobian defined such
that Ju,υ = ∂Fu/∂φυ = 1{u = υ} − h′′ (φυ) Qu,υλυ . Typically, convergence occurs
within five iterations from the initial guess φu = ŵnαu

0|n . We also apply the same
method to Theorem 2 when searching for k∗, but since this is standard, we omit the
details.
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Table 1 The model states that once every 10 years (on average) the market will crash: asset 1 will loose
20% of its value, while asset 2 will loose 45%. Additionally, once every 5 years (on average) the market
will correct itself: asset 1 will adjust downwards by 10%, while asset 2 drops by 30%. On the positive side,
once every 2 years (on average) the assets will jump upwards with 4% and 6%, respectively

Event υ αυ
0|1 αυ

0|2 λυ

1 −20% −45% 0.1

2 −10% −30% 0.2

3 4% 6% 0.5

Because this Section is about how to quantify an investor’s perception of jumps,
we keep the diffusion part fixed. The parameters we have chosen are: σ0|1 = 20%,
σ0|2 = 30%, and ρ0|1,2 = 60%. This yields the continuous instantaneous covariance
matrix

V c
0 =

(
0.040 0.036
0.036 0.090

)
. (21)

In order to explain why the second asset is assumed to be more volatile, we consider
two distinct cases.

4.1 Fearing a crash

Consider an investor who is concerned about the next financial crash. His perception
of the two assets in which he trades is described in Table 1.

Clearly, he fears a gloomy future and wants to allocate his assets accordingly.
The perceived jumps add volatility to the assets, as described in Eqs. (10) and (11),
according to

V d
0 =

(
0.007 0.016
0.016 0.040

)
. (22)

It is interesting to note that the jump correlation, that is, the correlation implied fromV d
0

is approximately 98%. Hence, the investor could basically have modeled the discrete
events with a single mark2. With that being said, there is evidence; see, for example,
Sandoval and Franca (2012) that large financial crashes tend to be highly correlated
among assets. Yet, the total correlation between the two assets amounts to 67%.

We now set the rate of excess returns to: b0|1 = 12% and b0|2 = 20%, such that they
have the same Sharpe ratios (0.555 to be precise). This yields the asset allocations

ŵ =
(
1.537
0.921

)
, k∗ŵ =

(
1.233
0.739

)
, w∗ =

(
1.508
0.597

)
. (23)

2 Note that the jump correlation, Vd
0|1,2/

√
Vd
0|1,1Vd

0|2,2, equals 100% if the mark space ϒ contains only a

single point.
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Fig. 2 This figure shows the rate of excess logarithmic returnμ0|w as a function of the volatility σ0|w for the
strategies: w = kŵ (maximal Sharpe) and w = kw∗ (Kelly), with k used to generate various combinations.
The jump specification is given by Table 1 (fearing a crash). We also compare to a situation with no jumps,
that is where the covariance matrix V0 is fully allocated to the continuous part V c

0

Table 2 This table shows the local characteristics of the growth optimal maximal Sharpe and Kelly strate-
gies. Note that the maximal Sharpe strategy has a higher instantaneous Sharpe ratio, while the Kelly strategy
has a higher rate of excess logarithmic return

Strategy w b0|w σ0|w s0|w μ0|w

k∗ŵ 29.6% 48.7% 0.607 16.2%

w∗ 30.0% 49.7% 0.605 16.3%

Hence, the maximal Sharpe strategy allocates 1.7 times more wealth to asset 1, while
the Kelly strategy allocates 2.5 times more wealth to asset 1. In other words, a Kelly
trader fears market crashes more than a maximal Sharpe investor. For further details
on these strategies, see Table 2. Note that the Kelly strategy has a slightly higher rate
of excess logarithmic return but a slightly lower instantaneous Sharpe ratio than the
growth optimal maximal Sharpe strategy.

Finally, we address the question of robustness. We evaluate the worst-case scenario
for the relative jumps, minυ(w1αυ

0|1+w2αυ
0|2), and find this expression to equal: -0.58

forw = k∗ŵ and−0.57 forw = w∗. Hence, by leveraging these strategies, we expect
the maximal Sharpe strategy to go bankrupt slightly before the Kelly strategy. Another
way to highlight this behavior is to plot, as in Fig. 2, the rate of excess logarithmic
return μ0|kw against its volatility σ0|kw, as k varies, for the strategies w = ŵ and
w = w∗. This point of view indicates that the qualitative differences between the two
trading strategies are small and manifest only with high leverage. Another result that
we have observed is that the outcome mainly depends on the worst-case event υ = 1.
That is, if the relative jump sizes αυ

0|1 and αυ
0|2 are set to zero, for υ = 2 and 3, and

we simply re-calibrate the rate of excess returns, b0|1 and b0|2, to match the original
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Table 3 The model states that once every 10 years (on average) the investor’s asset picking skills result in:
asset 1 has a modest jump of 10%, while asset 2 makes a breakthrough and triple in price. Additionally,
once every 5 years (on average) the market will correct itself: asset 1 will adjust downwards by 10%, while
asset 2 drops by 30%. In the short run, once every 2 years (on average), the investor believes that asset 1
will remain neutral, while asset 2 will jump upwards with 10%

Event υ αυ
0|1 αυ

0|2 λυ

1 10% 200% 0.1

2 −10% −30% 0.2

3 0% 10% 0.5

instantaneous Sharpe ratios, s0|1 and s0|2, there is hardly any noticeable effect on any
of the quantities reported.

4.2 Picking a winner

We now consider an investor, full of confidence in his ability to pick assets that may
outperform the market in the near future.

Again, the perceived jumps, outlined inTable 3, add volatility to the assets according
to

V d
0 =

(
0.003 0.026
0.026 0.423

)
. (24)

In this scenario, the jump correlation is approximately 73%, while the total correlation
between the two assets equals 42%.

We now set the rate of excess returns to: b0|1 = 12% and b0|2 = 40%, such that
they have roughly the same Sharpe ratios (0.579 and 0.558, respectively, to be precise).
This yields the asset allocations

ŵ =
(
2.018
0.536

)
, k∗ŵ =

(
2.433
0.646

)
, w∗ =

(
0.811
1.551

)
. (25)

It is interesting to note that the maximal Sharpe strategy allocates 3.8 times more
wealth to asset 1, while the Kelly strategy allocates 1.9 times more wealth to asset 2.
In other words, a Kelly trader favors assets with huge upward potential much more
than a maximal Sharpe investor. For further details on these strategies, see Table 4.
Again, we note that the Kelly strategy has a higher rate of excess logarithmic return but
a lower instantaneous Sharpe ratio than the growth optimal maximal Sharpe strategy.

Regarding robustness, we notice that minυ(w1αυ
0|1 + w2αυ

0|2) equals: -0.44 for
w = k∗ŵ and −0.55 for w = w∗. Hence, the Kelly strategy seems to be riskier than
the maximal Sharpe strategy at first sight. However, when plotting the rate of excess
logarithmic return against the volatility, the picture changes. From Fig. 3 it is clear that
the Kelly strategy is the more robust, i.e. can be leveraged harder. A more thorough
analysis shows that the outcome is mainly driven by the events υ = 1 and 2. As in the
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Table 4 This table shows the local characteristics of the growth optimal maximal Sharpe and Kelly strate-
gies. Note that the maximal Sharpe strategy has a higher instantaneous Sharpe ratio, while the Kelly strategy
has a higher rate of excess logarithmic return

Strategy w b0|w σ0|w s0|w μ0|w

k∗ŵ 55.0% 81.5% 0.676 26.8%

w∗ 71.8% 119.1% 0.603 32.2%

Fig. 3 This figure shows the rate of excess logarithmic returnμ0|w as a function of the volatility σ0|w for the
strategies: w = kŵ (maximal Sharpe) and w = kw∗ (Kelly), with k used to generate various combinations.
The jump specification is given by Table 3 (picking a winner). We also compare to a situation with no
jumps, that is where the covariance matrix V0 is fully allocated to the continuous part V c

0

previous case study, we find that the two strategies respond similarly to the worst-case
event υ = 2. Hence, it is the best-case event υ = 1 that accounts for the differences.
For low and moderate levels of volatility, the Kelly strategy gives up a small amount
of the Sharpe ratio and in return it outperforms for high levels of volatility.

5 Comments on random jump sizes

In this Section, we show how to deal with random jump sizes, drawing inspiration
from Merton and his jump-diffusion model (Merton (1976)). We also show that the
case studies in the previous Section fit with this new interpretation.

We proceed by setting the mark space toϒ = [−1,∞)N . Next, define the intensity
measure by

λ(dυ, t) = λ(t) fα0(υ1, . . . , υN , t)dυ1 · · · dυN = λ(t) fα0(υ, t)dNυ, (26)

where λ denotes the intensity of the driving point process p while fα0 denotes the
density of the jumps α0 = (α0|1, . . . , α0|N ).
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Example 3 The jump specifications in Sect. 4 can equally be characterized by a gen-
eralized density function and a constant intensity measure as described below

fα0(υ1, υ2) =
3∑

i=1

δ0(υ1 − αi
0|1)δ0(υ2 − αi

0|2)pi ,

where δ0 denotes Dirac’s delta function and

pi = λi

λ
, λ =

3∑
i=1

λi .

The formula follows from identifying all jumps andmultiplyingwith the corresponding
probability.

In most cases, though, we can work with a reduced mark space. To illustrate, we set

f (i, j)
α0

(υi , υ j , t) =
∫

[−1,∞)N−2
fα0(υ1, . . . , υN , t)

N∏
n=1,n /∈{i, j}

dυn . (27)

Then, for instance, the instantaneous discrete covariance matrix in Eq. (11) takes the
form

V d
0|i, j (t) = λ(t)

∫
[−1,∞)2

υiυ j f
(i, j)
α0

(υi , υ j , t)dυi dυ j . (28)

Let us now considerMerton’s approach. First, we transform the random jump vector
α0 = (α0|1, . . . , α0|N ) to β0 = (β0|1, . . . , β0|N ), according to β0|n = ln (1 + α0|n).
We then write

μ0|w(t) = b0|w(t) − 1

2
σ 2
0|w(t) + λ(t)

∫
ϒ

h

(
N∑

n=1

wn (
eυn − 1

))
fβ0(υ, t)dNυ,

withϒ = [−∞,∞)N . Since we require that individual positions do not lead to default
losses, we enforce condition wn(eβ0|n − 1) ≥ −1 a.s., which implies that wn ∈ [0, 1]
if fβ0 has full support over ϒ . Moreover, in this case, we also require

∑N
n=1 wn ≤ 1,

as otherwise the entire portfolio defaults. Clearly, Merton’s original approach is rather
limited when studying default risk, since leveraged positions (neither long nor short)
are not allowed. In the sequel, we introduce some modifications to avoid overstating
the risk of default. First, we define the random variables Zw = ∑N

n=1 wnα0|n and
Yw = ln (1 + Zw). Merton’s approach then reads

μ0|w(t) = b0|w(t) − 1

2
σ 2
0|w(t) + λ(t)

∫
[−∞,∞)

h
(
ey − 1

)
fYw(y, t)dy, (29)
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Fig. 4 This figure shows the rate of excess logarithmic return μ0|w as a function of the volatility σ0|w
for the maximal Sharpe strategies w = kŵ, where k is used to generate various combinations. The plot
compares the jump specification in Table 1 (fearing a crash) with Merton’s approach. We also include the
case of no jumps, that is where the fixed covariance matrix V0 is fully allocated to the continuous part V c

0

where fYw is the density of Yw.We now assume that Yw has aGaussian distribution and
plot in Fig. 4 the rate of excess logarithmic return versus the volatility, for w = kŵ,
based on the case study: fearing a crash (Table 1). More precisely, we let Ykŵ =
ak+bkε, where ε is a standardGaussian randomvariable (mean zero and unit variance),
and analytically calibrate the parameters (ak, bk, λ), one calibration for each value of
k, by matching the first moments of the relative jumps

λ

∫ ∞

−∞

(
eak+bkυ − 1

)p
1√
2π

e− 1
2 x

2
dυ =

3∑
υ=1

(
2∑

n=1

wnαυ
0|n

)p

λυ, p ∈ {0, 1, 2}.

Although there might be more sophisticated ways to calibrate the parameters, it does
not change the observation, from Fig. 4, that the jumps have only little impact in
our version of Merton’s approach. The explanation is that the choice of distribution
ignores the point mass at Zw = −1 (or Yw = −∞). The higher the leverage (i.e.
the larger the value of k), the more likely it is that jumps in the primary assets make
the wealth process go negative, thus leading to bankruptcy. For example, from Table
1, one sees that any leverage beyond the value −1/minυ

∑
n ŵnαυ

0|n = 1.39 makes
the investor lose all his money (or more) eventually. With the current interpretation
of Merton’s approach, there is no such limit, and consequently the default risk can
be largely underestimated (unless the calibrated Gaussian parameters are adjusted in
some clever way). However, it is not trivial to model the point mass (representing
default) so that it behaves well under leverage. For this reason, we much prefer the
more direct approach outlined in Sect. 4, as further highlighted below.

123



Kelly trading when asset…

5.1 Application to trading

When applying trading rules to the real market, there are several factors to consider
that require the addition of jumps to a model. In particular, it is not feasible to trade in
continuous-time, as markets are closed during the nights and weekends. In addition,
fees are charged for every trade made. Thus, in reality, an investor executes trades
at discrete time points. This results in observable finite price movements between
non-trading intervals, which can be considered as jumps.

Henceforth, we consider an investor who trades at discrete times, with 	 years
apart. For simplicity, we only consider trading in one risky asset. The information
available to the investor, at each trading time ti = i	, is the distribution of the risky
asset at the next trading time

Fβ0(υ) = P
(
β0|1 ≤ υ|Fti

)
, β0|1 = ln

P0|1(ti+1)

P0|1(ti )
. (30)

The investor applies a self-financing portfolio such that

X0|w(ti+1) − X0|w(ti )

X0|w(ti )
= w

P0|1(ti+1) − P0|1(ti )
P0|1(ti )

,

and calculates the rate of excess logarithmic return

μ0|w = 1

	
E

[
ln

X0|w(ti+1)

X0|w(ti )
|Fti

]
= 1

	
E

[
ln

(
1 + w

(
eβ0|1 − 1

))|Fti

]
.

This yields

μ0|w = b0|w − 1

2
σ 2
0|w + λ

∫ ∞

−∞
h

(
w

(
eυ − 1

))
fβ0(υ)dυ, (31)

with λ = 1/	 and

b0|w = λE
[
w

(
eβ0|1 − 1

) |Fti

]
, σ 2

0|w = λE

[(
w

(
eβ0|1 − 1

))2 |Fti

]
. (32)

The problem with Eq. (31), however, is precisely what we saw when analyzing Mer-
ton’s original model, namely that we cannot study leveraged positions (w > 1 or
w < 0) if the density fβ0 has full support on the real line. The way we proceed is to
cast the setting into one driven by amarked point process. To explain themethodology,
we set

Fβ0(υ) = N

(
υ − μ0|1	
σ0|1

√
	

)
, (33)

where N denotes the distribution function of a standard Gaussian random variable,
and recall the variable α0|1 = exp(β0|1) − 1. We then assume that the mark space
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contains seven points, ϒ = {υ−3, . . . , υ3}. For each discrete event in ϒ we specify
the relative jump size αi

0|1, i ∈ {−3, . . . , 3}, according to

αi
0|1 = eμ0|1	+iσ0|1

√
	 − 1, i ∈ {−3,−2,−1, 0, 1, 2, 3}. (34)

The associated intensities, λi , are defined in terms of the corresponding probabilities
pi , such that λi = λpi = pi/	. We now set

p0 = N (c) − N (−c),

pi = N (c + i) − N (c + i − 1), i ∈ {1, 2},
p3 = 1 − N (c + 2),

p−i = pi ,

so that
∑

i pi = 1. Finally, we determine the free constant c according to

3∑
i=−3

αi
0|1λi = λE

[
eβ0|1 − 1

] = 1
	

(
eμ0|1	+ 1

2 σ 2
0|1	 − 1

)
. (35)

In Fig. 5, we plot the rate of excess logarithmic return, which, after simplifications,
takes the form

μ0|w =
3∑

i=−3

ln(1 + wαi
0|1)λi , (36)

against the level of the trading strategyw1 for various choices of the trading frequency
λ = 1/	. Here, the parameters used are set to match S&P500. When trading in
continuous-time (	 → 0), we know that μ0|kŵ = 1

2k(2− k)s20|ŵ and σ 2
0|kŵ = k2s20|ŵ.

In this case, leveraging beyond the growth optimal Kelly strategy generates inefficient
trading strategies in the sense that the same rate of excess logarithmic return can be
achieved at a lower volatility. However, with discrete trading, the situation ismore dire.
For example, a leveraged investor that only trades every quarter (or less frequently)
faces a big increase in default risk. We also note that for proper fractional Kelly
strategies, such as the famous half-Kelly strategy w = 1

2 ŵ, the plot does not indicate
any disadvantage in trading infrequently. However, this observation should be treated
with care, as a different assumption for the distribution function in Eq. (33) could
well increase the default risk; recall that with Merton’s original approach, the upper
limit of w equals 1. Another situation where we can expect a higher default risk is
for strategies trading in more than one risky asset; especially if the investor is long
some assets and short others. The reason being simply that in this case, the investor is
exposed to both the left and right tails of the asset distributions.

It may sound like a major restriction to limit trading to discrete points in time;
for example, when the trading interval is as long as six months. For this reason,
we present an alternative interpretation of Fig. 5. First, let us recall that (similar to
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Table 5 This table shows various jump-diffusion models that all agree on the total variance V0 and the
instantaneous Sharpe ratio s0|1. Here, the mark space contains just a single point, with parameters α−3

0|1 and
λ−3

μ0|1 σ0|1 α−3
0|1 λ−3 years between jumps corresponding 	

10.0% 20.0% 0.0% ∞ 0 0

10.1% 19.6% −7.8% 0.280 3.6 1 week

10.1% 19.6% −15.2% 0.065 15.5 1 month

10.1% 19.7% −24.0% 0.022 46.4 3 months

10.0% 19.7% −31.2% 0.011 92.8 6 months

Fig. 5 This figure shows the rate of excess logarithmic return μ0|w as a function of the strategy w, for
various levels of the trading period 	. The parameters used are: μ0|1 = 0.1 and σ0|1 = 0.2, such that

ŵ = 1/2 + μ0|1/σ 2
0|1 = 3 as 	 → 0. Furthermore, the calibrated parameter c ≈ 0.55

Merton’s approach) default is related to the worst-case relative jump size, which in
our setting equals α−3

0|1. In Table 5, we present various jump-diffusion models that

keep the total variance σ 2
0|1 and the instantaneous Sharpe ratio s0|1 unchanged. The

models use a reducedmark space ϒ̄ = {υ−3}, containing the worst-case point from the
original mark space, with parameters α−3

0|1 and λ−3. Thereafter, the asset parameters
are modified, using Eqs. (10) and (16), according to

μ0|1 → μ0|1 +
(
h

(
α−3
0|1

)
+ 1

2

(
α−3
0|1

)2)
λ−3, σ 2

0|1 → σ 2
0|1 −

(
α−3
0|1

)2
λ−3.

What is interesting to note is that the models presented in Table 5 generate excess
logarithmic return rates, μ0|w, which almost perfectly match those in Fig. 5. This
alternative interpretation agrees well with historical data for the largest relative losses
of the S&P500 index. It also shows that the return of a trading strategy is mainly
driven by the diffusion parameters and the worst-case jump (represented by its size and
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intensity); an observation that further strengthens the practical relevance of Example 1
and 2. Only in rather extreme situations, for example the case study picking a winner,
must we also account for the best-case jump.

We end the discussion by emphasizing that trading is discrete by nature and that
related properties (like sensitivity to trading frequency) should always be evaluated,
especially when leverage is applied. The framework of marked point processes is
well suited for such robustness analysis and for the corresponding worst-case jump
analysis.

6 Comments on volatility

In this Section, we take a closer look at the instantaneous covariance matrix and how
best to define ameasure of volatility in the presence of jumps.What are the implications
if we do not follow Björk and Slinko (2006) and Christensen and Platen (2007) when
defining volatility?

Our first observation is that, with jumps absent, the volatility can be expressed in
either of the two ways:

σ 2
0|w(t) = 1

X2
0|w(t−)

d

dt
〈X0|w, X0|w〉(t) = wi (t)V c

0|i, j (t)w
j (t), (37)

σ̃ 2
0|w(t) = d

dt
〈ln X0|w, ln X0|w〉(t) = wi (t)V c

0|i, j (t)w j (t). (38)

However, with jumps present, these two expressions are no longer identical. Using
Eqs. (10), (11), and Lemma 1, we see that

σ 2
0|w(t) = wi (t)

(
V c
0|i, j (t) +

∫
ϒ

α0|i (υ, t)α0| j (υ, t)λ(dυ, t)

)
w j (t), (39)

σ̃ 2
0|w(t) = wi (t)V c

0|i, j (t)w
j (t) +

∫
ϒ

ln2
(
1 + wn(t)α0|n(υ, t)

)
λ(dυ, t), (40)

such that σ0|kw = |k|σ0|w but σ̃0|kw �= |k|σ̃0|w, for any real-valued predictable process
k. Consequently,whatwe call, the logarithmic volatility σ̃ is not suitablewhen defining
the instantaneous Sharpe ratio (assuming that we want this quantity to be leverage
invariant). For small jumps, though, the expressions are close in the sense that

σ̃ 2
0|w(t) = σ 2

0|w(t) +
∫

ϒ

O (
wn(t)α0|n(υ, t)

)3
λ(dυ, t). (41)

However, for finite time horizons, it is the logarithmic volatility that is of importance,
since it is to the logarithmic returns that the law of large numbers (and the central limit
theorem) apply. In Figs. 6 and 7, we plot the behavior of the rate of excess logarith-
mic return μ0|w against the logarithmic volatility σ̃0|w for the two case studies in
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Fig. 6 This figure shows the rate of excess logarithmic returnμ0|w as a function of the logarithmic volatility
σ̃0|w for the strategies: w = kŵ (maximal Sharpe) and w = kw∗ (Kelly), with k used to generate various
combinations. The jump specification is given by Table 1 (fearing a crash). We also compare to a situation
with no jumps, that is where the modified covariance matrix Ṽ0 is fully allocated to the continuous part V

c
0

Fig. 7 This figure shows the rate of excess logarithmic returnμ0|w as a function of the logarithmic volatility
σ̃0|w for the strategies: w = kŵ (maximal Sharpe) and w = kw∗ (Kelly), with k used to generate various
combinations. The jump specification is given by Table 3 (picking a winner). We also compare to a situation
with no jumps, that is where the modified covariance matrix Ṽ0 is fully allocated to the continuous part V

c
0

Sect. 4. In order to compare with the situation where jumps are not present, we
further set

Ṽ0|v,w(t) = vi (t)Ṽ0|i, j (t)w j (t), Ṽ0|i, j (t) = V c
0|i, j (t) + Ṽ d

0|i, j (t), (42)
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Table 6 This table shows the volatility and the logarithmic volatility for the growth optimal maximal Sharpe
and Kelly strategies. Note that the volatilities are lower (higher) than the logarithmic volatilities for the case
study: fearing a crash (picking a winner)

Case study σ0|k∗ŵ σ0|w∗ σ̃0|k∗ŵ σ̃0|w∗

fearing a crash 48.7% 49.7% 53.9 % 54.4%

picking a winner 81.5% 119.1% 73.6 % 82.1%

with

Ṽ d
0|i, j (t) =

∫
ϒ

ln(1 + α0|i (υ, t)) ln(1 + α0| j (υ, t))λ(dυ, t). (43)

We then assign the full covariance matrix Ṽ0 to its continuous part while setting the
discrete part to zero. Clearly, this methodology is an approximate attempt to make
the instantaneous covariance matrices comparable. However, as can be seen from the
figures, it agrees well with, in particular, Kelly’s approach. Hence, despite the many
attractive features of the maximal Sharpe strategy, we argue that this approach might
lead to suboptimal allocations (especially when large positive jumps are present) due
to the non-linearity of the logarithmic volatility with respect to leverage. In contrast,
we see that Kelly’s approach deviates less from known results obtained by studying
portfolio allocations in markets modeled without jumps.

In Table 6 we provide a summary related to the two volatility measures for each of
the case studies in Sect. 4. Although it is easy to predict which of themeasures is higher
in each separate case, it is somewhat surprising to see such a significant reduction in
the logarithmic volatility for the Kelly strategy when large positive jumps dominate. In
general, it is difficult to say that one volatility measure is always better than the other
because the answer very much depends on the context. For example, when addressing
optimal long-term growth, it makes sense to focus on logarithmic volatility. However,
for short time periods, the first volatility measure is more natural, since it connects
better with the self-financing property. Below, we introduce yet another candidate

σ̄ 2
0|w(t) = 1

3
σ 2
0|w(t) + 2

3
σ̃ 2
0|w(t). (44)

The reason for this choice follows from Eq. (16), which then takes the form

μ0|w(t) = b0|w(t) − 1

2
σ̄ 2
0|w(t) +

∫
ϒ

h̄
(
wn(t)α0|n(υ, t)

)
λ(dυ, t), (45)

where now

h̄(x) = ln(1 + x) − x + 1

6
x2 + 1

3
ln2(1 + x) ≈

1

18
x4 − 7

90
x5 + . . . (46)

Since h̄ almost vanishes for values close to zero, we obtain an expression for the rate
of excess logarithmic return that essentially looks as if derived from a pure diffusion
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model. We conclude the Section by acknowledging that it is not obvious how best to
define a volatility measure when jumps are present.

7 Conclusions

In this paper we show that when asset prices have jumps, there is a distinction between
maximal Sharpe and Kelly strategies. The result should be compared with a pure dif-
fusion model, where no such distinction is made. We show that the asset allocations
between a jump-diffusion and a pure diffusion model can change considerably. Our
results further indicate that a Kelly trader fears market crashes but favors stock pick-
ing more than a maximal Sharpe trader. However, in terms of local characteristics, the
discrepancies manifest themselves mainly for highly volatile trading strategies. This
means that maximal Sharpe strategies are good approximations of most Kelly strate-
gies. Yet, when comparing the qualitative behavior to the situation without jumps,
we find that Kelly’s approach coincides more closely. We also explain why Merton’s
approach to jumpmodeling can either largely overestimate or underestimate the risk of
bankruptcy, and further introduce a framework better suited for answering such ques-
tions. In particular, we find that the return of a trading strategy is mainly driven by the
diffusion parameters and the worst-case jump (represented by its size and intensity).
Only in extreme situations must we also account for the best-case jump.
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